Complex variables for separation of Hamilton-Jacobi equation on real pseudo-Riemannian manifolds
نویسندگان
چکیده
In this paper the geometric theory of separation of variables for time-independent Hamilton-Jacobi equation is extended to include the case of complex eigenvalues of a Killing tensor on pseudo-Riemannian manifolds. This task is performed without to complexify the manifold but just considering complex-valued functions on it. The simple formalism introduced allows to extend in a very natural way the classical results on separation of variables (including Levi-Civita criterion and Stäckel-Eisenhart theory) to the complex case. Orthogonal variables only are considered.
منابع مشابه
Nijenhuis Integrability for Killing Tensors
The fundamental tool in the classification of orthogonal coordinate systems in which the Hamilton–Jacobi and other prominent equations can be solved by a separation of variables are second order Killing tensors which satisfy the Nijenhuis integrability conditions. The latter are a system of three non-linear partial differential equations. We give a simple and completely algebraic proof that for...
متن کاملCommutative curvature operators over four-dimensional generalized symmetric spaces
Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
متن کاملComplex variables for separation of Hamilton-Jacobi equation on three-dimensional Minkowski space
The real coordinates separating geodesic Hamilton-Jacobi equation on three-dimensional Minkowski space in several cases cannot be defined in the whole space. We show through an example how to naturally extend them to complex variables defined everywhere (excluding the singular surfaces of each coordinate system only) and still separating the same equation.
متن کاملPseudo-riemannian Jacobi–videv Manifolds
We exhibit several families of Jacobi–Videv pseudo-Riemannian manifolds which are not Einstein. We also exhibit Jacobi–Videv algebraic curvature tensors where the Ricci operator defines an almost complex structure.
متن کاملBi–Hamiltonian manifolds, quasi-bi-Hamiltonian systems and separation variables
We discuss from a bi-Hamiltonian point of view the Hamilton–Jacobi separability of a few dynamical systems. They are shown to admit, in their natural phase space, a quasi–bi– Hamiltonian formulation of Pfaffian type. This property allows us to straightforwardly recover a set of separation variables for the corresponding Hamilton–Jacobi equation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006